

2018년 3월 환경 방사성물질 조사결과

2018년 3월 환경 방사성물질 조사결과

- 도내 공기, 빗물, 해수, 정수, 원수, 지하수, 토양 등 총 7종 32개 시료에 대한 조사결과 토양과 해수에서 ¹³⁷Cs이 불검출~5.42 Bq/kg-dry, 불검출~0.00175 Bq/L로 평상범위 이내임
 - 전국 토양 ¹³⁷C 평상범위 : 불검출~24.6 Bq/kg-dry(한국원자력안전기술원, '14년~'16년)
 - 전국 해수 137 C 평상범위 : 불검출 ~ 0.00277 Bq/L(한국원자력안전기술원, $'14년\sim'16년$)
- 의령군과 함안군에 위치한 6개 방사선취급 허가업체 주변의 공간선량률 측정결과 측정값은 92.5~168 nSv/hr로 국내 자연범위(300 nSv/hr) 내에 포함됨.
- 1. 조사 기간 : '17. 2. 27. ~ 3. 31.

2. 조사 대상

- ◈ 방사성물질 검사: 7종32건공기1, 빗물1, 해수2, 장수2, 원수1, 지하수4, 토양21)
- ◈ 방사선량률 측정 : 6개 방사선취급 허기업체(함안군 4, 의령군 2)

3. 조사 현황

Table 1. 방사성물질 조사현황

구분	계획	실	적	진도율	비고
1 &	계탁	합계	3월	(%)	비포
계	370	61	38	16.5	
방사성물질 조사	277	53	32	19.1	
선량률 측정	93	8	6	8.60	

4. 조사 내용 및 방법

Table 2. 공기 및 빗물 방사성물질 조사

내 용	공기	빗물			
채취 장소	서부청사 별관1층	서부청사 별관1층			
채취 기간	'18. 2. 27 ~ 3. 30	′18. 3. 1 ~ 3. 30			
채취 기구	저용적 공기포집기	빗물 채집기			
채취 수량	4,277 m ³				
전 처 리	없음	증발농축(30 L → 1 L)			
계측 시간	8	8만초			
분석 핵종	41:	개 핵종			
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs				
측정 결과	●관련 규정 및 법령에서 제시한 기준 준수 여부 파악●방사성물질 분포경향 파악				

Table 3. 해수 방사성물질 조사

내 용	해	수					
채취 장소	그 거제시(장목면 대계마을)	남해군(미조면 천하마을)					
채취 기간	¹ 18. 3. 13 15:20	´18. 3. 13 11:40					
채취 기구	두레박	두레박					
채취 수령	70 L	70 L					
전 처 리	증발·농축(5 L → 1	L), AMP 공침(60 L)					
계측 시긴	8 문	· ·					
분석 핵종	41개 핵종(자연	핵종, 인공핵종)					
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs 외 다수 인공핵종					
측정 결과	• 관련 규정 및 법령에서 제시한 기 • 방사성물질의 분포 경향 파악	• 관련 규정 및 법령에서 제시한 기준 준수 여부 파악 • 방사성물질의 분포 경향 파악					

※ 해수의 증발·농축법과 AMP 공침법은 각각 ¹³¹I과 ¹³⁴Cs, ¹³⁷Cs을 분석하기 위한 것임

Table 4. 먹는 물(관원) 방사성물질 조사

구분	원수	정수			
채취 지역	양산시(관원)	양산시(관원)			
채취 장소	신도시취수장	범어 및 신도시 정수장			
채취 일시	'18. 3. 21 18:00				
채취 수량	20 L	1 L			
전처리	증발농축(20 L → 1 L)	N/A			
계측 시간	8만초	1만초			
분석 핵종	41개 핵종(자연 및 인공)	7개 핵종(자연핵종, 인공핵종)			
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs				
측정 결과	●관련 규정 및 법령에서 제시한 기준 준수 여부 파악 ●방사성물질의 분포 경향 파악				

Table 5. 먹는 물(지하수) 방사성물질 조사

구분	지하수							
채취 지역		통영시						
채취 장소	무전동 357 도천동 121 봉평동 260-2 도산면 관덕리 6·							
채취 일시	'18. 3. 30 16:00							
채취 수량	1 L							
전처리			N/A					
계측 시간		1만초						
분석 핵종		7개 핵종(자	연핵종, 인공핵종)				
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs							
측정 결과		! 법령에서 제시학 분포 경향 파악	한 기준 준수 여부	그 파악				

Table 6. 토양(주택단지) 방사성물질 조사

구분	주택단지 토양							
채취 지역	진주시	거창군	함양군	남해군	하동군	의령군		
채취 일시	3.7 12:40	3.9 12:00	3.9 12:00 3.9 14:10		3.22 14:40	3.23 13:20		
채취 수량		3~5 kg						
전처리	건조(105	건조(105 °C, 48시간) → 분쇄(믹서기) → 2μm 체로 거른 후 계측						
계측 시간		8만초						
분석 핵종		41개 핵종(자연핵종, 인공핵종)						
시험 핵종		¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs						
측정 결과		● 관련 규정 및 법령에서 제시한 기준 준수 여부 파악 ● 방사성물질의 분포 경향 파악						

Table 7. 토양(산업단지) 방사성물질 조사

구분	산업단지 토양							
채취 지역	진주시	거창군	함양군	남해군	하동군	의령군		
채취 일시	3.7 12:10	3.9 12:25	3.9 14:40	3.22 14:00	3.22 15:30	3.23 14:10		
채취 수량		3~5 kg						
전처리	건조(105	건조(105 °C, 48시간) → 분쇄(믹서기) → 2μm 체로 거른 후 계측						
계측 시간		8만초						
분석 핵종		41	개 핵종(자연	년핵종, 인공	·핵종)			
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs							
측정 결과			에서 제시힌 . 경향 파악	· 기준 준수	여부 파악			

Table 8. 토양(농경지) 방사성물질 조사

구분	농경지 토양							
채취 지역	진주시	거창군	함양군	남해군	하동군	의령군		
채취 일시	3.7 11:20	3.9 12:50 3.9 15:20		3.22 13:40	3.22 14:50	3.23 13:40		
채취 수량		3∼5 kg						
전처리	건조(105 °C, 48시간) → 분쇄(믹서기) → 2μm 체로 거른 후 계측							
계측 시간		8만초						
분석 핵종		41개 핵종(자연핵종, 인공핵종)						
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs							
측정 결과		● 관련 규정 및 법령에서 제시한 기준 준수 여부 파악 ● 방사성물질의 분포 경향 파악						

Table 9. 토양(방사선비상계획구역) 방사성물질 조사

구분	방사선비상계획구역 토양						
채취 지역	웅상정수장	삼호34근린공원	천성산 정상				
채취 일시	3.14 17:50	3.14 17:20	3.14 15:00				
채취 수량		3∼5 kg					
전처리	건조(105 °C, 48시간) → 분쇄(믹서기) → 2μm 체로 거른 후 계측						
계측 시간		8만초					
분석 핵종	41	41개 핵종(자연핵종, 인공핵종)					
시험 핵종	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs						
측정 결과	● 관련 규정 및 법령에서 제시한 기준 준수 여부 파악 ● 방사성물질의 분포 경향 파악						

5. 방사성물질 조사 결과

5. 1 공기 시료

서부청사 별관 1층에 설치한 저용적 공기포집기를 이용하여 약 1개월(2.27~3.30) 동안 포집한 공기 시료 총 4,277 m³에 대한 조사를 수행한 결과 ¹³¹I, ¹³⁴Cs, ¹³⁷Cs 등의 주요 인공 방사성물질은 검출되지 않았고, 자연 방사성물질인 ⁷Be이 0.000418±0.0000680 Bq/m³로 검출되어 3월 공기 시료의 경우 인공 방사성물질에 의한 영향은 없는 것으로 판단함.

또한, ¹³¹I, ¹³⁴Cs, ¹³⁷Cs 등의 방사성물질은 원자력안전위원회 고시 제2014-12호에 제시된 MDA 기준치를 만족하였기 때문에 계측결과에 대한 신뢰도에는 확보된 것으로 판단하였고, 분석 결과는 아래의 Table 10에 제시하였음.

5. 2 빗물 시료

서부청사 별관 1층에 설치한 빗물채집기를 이용하여 약 1개월('18. 3. 1~3. 30) 동안 채집한 빗물 시료 중 30 L를 분석한 결과 모든 시료에서 ¹³¹I, ¹³⁴Cs, ¹³⁷Cs 등의 주요 인공 핵종은 검출되지 않았고, 자연 방사성물질인 ²²⁶Ra이 0.281±0.0189 Bq/L로 검출됨. 이러한 조사 결과에 근거하여 2018년 3월 빗물의 경우 인공 방사성물질에 의한 영향은 없는 것으로 판단됨.

또한, 모든 핵종이 원자력안전위원회 고시 제2014-12호에서 제시한 MDA (최소검출방사능) 기준치를 만족하였기 때문에 계측결과에 대한 신뢰도에는 문제가 없는 것으로 판단되고, 분석 결과는 아래의 Table 10에 제시하였음.

Table 10. 공기 및 빗물 조사결과

	7.0](Bq/m³)		빗물
순서	분석 핵종	고시2014-12호 MDA	3월	고시2014-12 MDA	3월
1	⁷ Be	N/A	0.000418±0.0000680	N/A	불검출
2	⁴⁰ K	N/A	불검출	N/A	불검출
3	⁵¹ Cr	5E-03	불검출(<1.30E-4)	1	불검출(<0.0255)
4	⁵⁴ Mn	8E-05	불검출(<1.31E-5)	0.5	불검출(<0.00292)
5	5 ⁵⁷ Co	N/A	불검출	N/A	불검출
6	⁵⁸ Co	3E-04	불검출(<1.26E-5)	0.05	불검출(<0.00292)
7	⁵⁹ Fe	5E-04	불검출(<9.62E-6)	0.03	불검출(<0.00562)
8	⁶⁰ Co	8E-05	불검출(<1.85E-5)	0.02	불검출(<0.00357)
9	⁶⁵ Zn	5E-04	불검출(<2.66E-5)	0.05	불검출(<0.00613)
10	⁸⁵ Sr	N/A	불검출	N/A	불검출
11	⁸⁸ Kr	N/A	불검출	N/A	불검출
12	88Y	N/A	불검출	N/A	불검출
13	⁹⁵ Zr	5E-04	불검출(<2.58E-5)	0.5	불검출(<0.00451)
14	⁹⁵ Nb	5E-04	불검출(<1.41E-5)	0.5	불검출(<0.00313)
15	¹⁰¹ Rh	N/A	불검출	N/A	불검출
16	¹⁰³ Ru	N/A	불검출	N/A	불검출
17	¹⁰⁶ Rh	N/A	불검출	0.05	불검출(<0.0208)
18	¹⁰⁹ Cd	N/A	불검출	N/A	불검출
19	110mAg	N/A	불검출	N/A	불검출
20	Sn	N/A	불검출	N/A	불검출
21	¹³¹ I	5E-02	불검출(<3.59E-5)	0.1	불검출(<0.00452)
22	¹³³ Xe	N/A	불검출	N/A	불검출
23	^{133m} Xe	N/A	불검출	N/A	불검출
24	134Cs	8E-05	불검출(<1.23E-5)	0.008	불검출(<0.00270)
25	¹³⁷ Cs	8E-05	불검출(<1.32E-5)	0.008	불검출(<0.00305)
26	¹³⁹ Ce	N/A	불검출	N/A	불검출
27	¹⁴⁰ Ba	0.1	불검출(<7.52E-5)	10	불검출(<0.0188)
28	¹⁴⁰ La	N/A	불검출	N/A	불검출
29	¹⁴¹ Ce	N/A	불검출	N/A	불검출
30	¹⁴³ Ce	N/A	불검출	N/A	불검출
31	¹⁴⁴ Ce	N/A	불검출	N/A	불검출
32	²⁰⁸ T1	N/A	불검출	N/A	불검출
33	²¹² Bi	N/A	불검출	N/A	불검출
34	²¹² Pb	N/A	불검출	N/A	불검출
35	²¹⁴ Bi	N/A	불검출	N/A	불검출
36	²¹⁴ Pb	N/A	불검출	N/A	불검출
37	²²⁶ Ra	N/A	불검출	N/A	0.281±0.0189
38	²²⁷ Th	N/A	불검출	N/A	불검출
39	²²⁸ Ac	N/A	불검출	N/A	불검출
40	²³⁵ U	N/A	불검출	N/A	불검출
41	²³⁷ U	N/A	불검출	N/A	불검출

 $^{^*}$ 7 Be(베릴륨), 226 Ra(라듐) 등은 자연 방사성물질로 특별한 관리가 필요하지 않음

5. 3 해수 시료

2018년 3월에 거제시 장목면 대계마을과 남해군 미조면 천하마을에서 각각 70 L의 해수를 채취함. 채취한 시료 중 5 L는 ¹³¹I을 분석하기 위해 5 L에서 1 L로 증발·농축하였고, 나머지 65 L 중 60 L는 ¹³⁴Cs, ¹³⁷Cs 등을 분석하기 위해 AMP 공침법을 이용하여 전처리를 수행함.

전처리 후 감마핵종분석기로 분석한 결과 ¹³¹I, ¹³⁴Cs 등의 인공 핵종은 전혀 검출되지 않았고, ¹³⁷Cs이 남해군 해수에서 0.00175±0.000320 Bq/L로 검출됨. 검출된 값은 KINS(한국원자력안전기술원)에서 최근 3년간(2014년~2016년) 조사한 후 제시한 불검출~0.00277 Bq/L 범위 내에 포함됨. 남해군 해수에서 ¹³⁷Cs이 미량 검출되었지만 환경에서 ¹³⁷C과 거동특성이 유사한 ¹³⁴C가 검출되지 않아 과거 핵실험에 의한 방사능 낙진에 의한 영향이라 판단함. 자연 방사성물질의 경우 ⁴⁰K가 모든 해수에서 0.367~0.521 Bq/L로 검출됨.

이러한 분석결과에 근거하여 3월 해수시료의 경우 인공방사성물질 또는 후쿠시마 원전에 의한 영향은 없는 것으로 판단하였으며, 자세한 분석결과는 Table 11에 제시함. Table 11에서 보이듯이 모든 핵종에서 원자력안전위원회고시 제2014-12호 제시된 MDA(최소검출방사능) 요건을 만족하였기 때문에 계측 및 분석 결과에 대한 신뢰도는 확보된 것으로 판단함.

Table 11. 해수 조사결과(Bq/L)

<u>کی ۱</u>	-11 Z		3월 해수		
순서	핵종	MDA	거제시	남해군	비고
1	⁷ Be	N/A	불검출	불검출	
2	⁴⁰ K	N/A	0.367±0.00773	0.521±0.0107	
3	⁵¹ Cr	0.05	불검출(<0.0110)	불검출(<0.0121)	
4	⁵⁴ Mn	0.005	불검출(<0.00108)	불검출(<0.00181)	
5	⁵⁷ Co	N/A	불검출	불검출	
6	⁵⁸ Co	0.005	불검출(<0.00109)	불검출(<0.00169)	
7	⁵⁹ Fe	0.005	불검출(<0.00253)	불검출(<0.00440)	
8	⁶⁰ Co	0.005	불검출(<0.00171)	불검출(<0.00215)	
9	⁶⁵ Zn	0.02	불검출(<0.00200)	불검출(<0.00269)	
10	⁸⁵ Sr	N/A	불검출	불검출	
11	⁸⁸ Kr	N/A	불검출	불검출	
12	⁸⁸ Y	N/A	불검출	불검출	
13	⁹⁵ Zr	0.006	불검출(<0.00202)	불검출(<0.00295)	
14	⁹⁵ Nb	0.006	불검출(<0.00124)	불검출(<0.00185)	
15	¹⁰¹ Rh	N/A	불검출	불검출	
16	¹⁰³ Ru	N/A	불검출	불검출	
17	¹⁰⁶ Rh	N/A	불검출	불검출	
18	¹⁰⁹ Cd	N/A	불검출	불검출	
19	110mAg	N/A	불검출	불검출	
20	¹¹³ Sn	N/A	불검출	불검출	
21	^{131}I	0.1	불검출(<0.0338)	불검출(<0.0296)	
22	¹³³ Xe		불검출	불검출	
23	^{133m} Xe		불검출	불검출	
24	¹³⁴ Cs	0.003	불검출(<0.000970)	불검출(<0.00134)	
25	¹³⁷ Cs	0.003	불검출(<0.00125)	0.00175±0.000320 불검출(<0.00176)	
26	¹³⁹ Ce	N/A	불검출	불검출	
27	¹⁴⁰ Ba	0.1	불검출(<0.00654)	불검출(<0.0119)	
28	¹⁴⁰ La		불검출	불검출	
29	¹⁴¹ Ce	N/A	불검출	불검출	
30	¹⁴³ Ce ¹⁴⁴ Ce	DT / A	불검출	불검출	
31		N/A	불검출	불검출	
32	²⁰⁸ Tl ²¹² Bi	N/A	불검출	불검출	
33	²¹² Pb	N/A	불검출	불검출	
34	²¹⁴ Bi	N/A	불검출	불검출	
35		N/A	불검출	불검출	
36	²¹⁴ Pb	N/A	불검출	불검출	
37	²²⁶ Ra ²²⁷ Th	N/A	불검출	불검출	
38	228 A	N/A	불검출	불검출	
39	²²⁸ Ac ²³⁵ U	N/A	불검출	불검출	
40	²³⁷ U	N/A	불검출	불검출	
41	U	N/A	불검출	불검출	

^{**} 40 K(칼륨)은 자연 방사성물질로 특별한 관리가 필요하지 않음

5. 4 먹는물(정수 및 원수)

2018년 3월 21일에 양산시에서 검사의뢰한 방사선비상계획구역 내·외부의 신도시취수장 원수와 신도시 및 범어 정수에 대한 방사능조사를 수행함. 조사결과 정수, 원소 시료에서 ¹³¹I, ¹³⁴Cs, ¹³⁷Cs 등의 주요 인공 방사성물질 모두 검출되지 않아 고리원전 및 기타 인공 방사성물질에 의한 영향은 없는 것으로 판단하였고, 상세한 결과는 아래 Table 12에 수록함.

Table 12. 먹는물(관원) 조사결과(Bq/L)

시료	지역	장소	핵종	검사결과(Bq/L)		비고									
 小豆	717	42	42	농도	MDA	n) <u>11</u>									
			^{131}I	불검출	<0.773										
		신도시 정수장	¹³⁴ Cs	불검출	<0.305										
 거스	양산시	010						0 1 0			¹³⁷ Cs	불검출	<0.325	· WHO Guideline 적용	
정수	8°L'11	0°L′1	범어 정수장	범어						¹³¹ I	불검출	<0.814	·1만초 계측(1 L 사용)		
										, ,	, ,			¹³⁴ Cs	불검출
								¹³⁷ Cs	불검출	<0.257					
	원수 양산시							¹³¹ I	불검출	<0.00909	· 원자력안전위원회고시 제2014-12호				
원수		원동] 취수장	¹³⁴ Cs	불검출	<0.00360	-3개 핵종모두 MDA 요건 만족									
			· · ·		¹³⁷ Cs	불검출	<0.00459	·8만초 계측(20 L 사용)							

5. 5 먹는물(지하수)

2018년 3월 30일에 통영시 무전동, 도천동, 봉평동, 도산면 등에 위치한 4개의 지하수수질측정망에서 각 1 L의 지하수를 채취한 후 전처리 없이 방사성물질 조사를 수행함. 조사결과 모든 지하수에서 ¹³¹I, ¹³⁴Cs, ¹³⁷Cs 등의 주요 인공 방사성물질 모두 검출되지 않아 고리원전 및 기타 인공 방사성물질에 의한 영향은 없는 것으로 판단하였고, 상세한 결과는 아래 Table 13에 수록함.

Table 13. 먹는물(지하수) 조사결과(Bq/L)

순번	채취지점	スム	핵종	검사결과(Bq/L)		비고
TU	(관측망명)	주소	4.2	농도	MDA	nl Tr
		무전동 357	¹³¹ I	불검출	<0.273	
1	N-5-a-1-01		¹³⁴ Cs	불검출	<0.230	
			¹³⁷ Cs	불검출	<0.341	
	N-5-b-1-01	도천동 121	¹³¹ I	불검출	<0.372	
2			¹³⁴ Cs	불검출	<0.334	
			¹³⁷ Cs	불검출	<0.279	· WHO Guideline 적용 · 1만초 계측(1 L 사용)
	N-5-d-1-01	봉평동 260-2	¹³¹ I	불검출	<0.328	
3			¹³⁴ Cs	불검출	<0.336	
			¹³⁷ Cs	불검출	<0.377	
	N-5-e-1-01	도산면 -5-e-1-01 관덕리 643-4	¹³¹ I	불검출	<0.313	
4			¹³⁴ Cs	불검출	<0.487	
			¹³⁷ Cs	불검출	<0.576	

5. 6 토양 시료

- ◆ 2018년 3월에 방사선비상계획구역 내 웅상정수장과 삼호34근린공원, 천성산 정상에서 각각 1개씩 총 3개의 토양을 채취함. 또한, 진주시, 거창군, 함양군, 남해군, 하동군, 의령군 등에 위치한 주택단지와 산업단지, 농경지에서 각각 1개씩 총 18개 토양을 채취함. 방사선비상계획구역과 일반 환경에서 채취한 총 21개 토양을 대상으로 방사성물질 조사를 수행함.
- 조사수행 결과 자연 방사성물질인 ⁷Be, ⁴⁰K, ²²⁶Ra, ²²⁷Th 등이 검출되었고, 주택단지에서 ⁷Be, ⁴⁰K, ²²⁷Th 등의 농도 범위는 각각 불검출~7.79 Bq/kg-dry, 673~920 Bq/kg-dry, 불검출~4.93 Bq/kg-dry로 나타남. 산업단지에서의 ⁷Be, ⁴⁰K, ²²⁶Ra, ²²⁷Th 등의 농도 범위는 각각 불검출~7.96 Bq/kg-dry, 불검출~713 Bq/kg-dry, 불검출~65.7 Bq/kg-dry, 불검출~4.48 Bq/kg-dry로 나타났고, 농경지에서 ⁷Be, ⁴⁰K, ²²⁷Th 등의 농도 범위는 각각 불검출~4.48 Bq/kg-dry로 나타났고, 농경지에서 ⁷Be, ⁴⁰K, ²²⁷Th 등의 농도 범위는 각각 불검출~6.68 Bq/kg-dry로 나타남. 상세한 결과는 아래 Table 14~Table 16에 수록함. 반면, 방사선비상계획 토양에서는 자연 방사성물질인 ⁴⁰K, ²²⁷Th 등이 검출되었고, 이들 핵종의 농도 범위는 각각 641~727 Bq/kg-dry, 불검출~6.17 Bq/kg-dry로 나타났고, 상세한 검사결과는 아래 Table 17에 수록함.
- ◆ 조사한 총 21개 토양 중 18개 토양에서 ¹³⁷Cs이 검출되었고, 검출된 농도 범위는 0.670~5.42 Bq/kg-dry로 나타났고, KINS에서 최근 3년간(2014년~2016년) 전국 토양을 분석한 후 제시한 불검출~24.6 Bq/kg-dry 범위 내에 포함됨. 상세한 결과는 Table 14~Table 17, Figure 1에 수록함. Figure 1은 Table 14~Table 17에 수록된 결과들 중 ¹³⁷Cs 분포경향을 가시적으로 파악하기 위해 나타낸 것으로 토양 유형별 큰 차이가 없는 것을 확인할 수 있음. 21개 토양 중 18개 토양에서 ¹³⁷Cs이 검출되었지만 환경에서 ¹³⁷C과 거동특성이 유사한 ¹³⁴C가 검출되지 않아 과거 핵실험에 의한 방사능 낙진에 의한 영향이라 판단함. 모든 핵종이 원자력안전위원회 고시 제2014-12호에서 제시한 MDA(최소검출방사능) 기준을 만족하였기 때문에 분석결과에 대한 신뢰도는 확보된 것으로 판단함.

Table 14. 토양(주택단지) 조사결과(Bq/kg-dry)

순서	핵종	MDA	주택단지 토양							
[七八]			진주시	거창군	함양군	남해군	하동군	의령군		
1	⁷ Be	N/A	5.32±0.737	4.10±0.674	불검출	7.79±0.880	7.05±0.891	7.72±0.976		
2	⁴⁰ K	N/A	763±5.77	757±5.34	748±5.39	673±5.72	830±5.70	920±6.32		
3	⁵¹ Cr	15	불검출(<4.21)	불검출(<3.28)	불검출(<3.88)	불검출(<2.36)	불검출(<5.18)	불검출(<5.61)		
4	⁵⁴ Mn	2	불검출(<0.481)	불검출(<0.517)	불검출(<0.474)	불검출(<0.516)	불검출(<0.616)	불검출(<0.682)		
5	⁵⁷ Co	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
6	⁵⁸ Co	2	불검출(<0.456)	불검출(<0.422)	불검출(<0.469)	불검출(<0.498)	불검출(<0.514)	불검출(<0.564)		
7	⁵⁹ Fe	5	불검출(<0.357)	불검출(<1.39)	불검출(<1.52)	불검출(<0.987)	불검출(<1.81)	불검출(<1.97)		
8	⁶⁰ Co	2	불검출(<0.619)	불검출(<0.596)	불검출(<0.558)	불검출(<0.776)	불검출(<0.828)	불검출(<0.918)		
9	⁶⁵ Zn	5	불검출(<1.05)	불검출(<1.04)	불검출(<0.969)	불검출(<0.998)	불검출(<1.16)	불검출(<1.29)		
10	⁸⁵ Sr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
11	⁸⁸ Kr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
12	⁸⁸ Y	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
13	95 Zr	5	불검출(<0.715)	불검출(<0.445)	불검출(<1.35)	불검출(<1.13)	불검출(<1.02)	불검출(<1.12)		
14	⁹⁵ Nb	5	불검출(<0.532)	불검출(<0.481)	불검출(<0.575)	불검출(<0.586)	불검출(<0.638)	불검출(<0.695)		
15	¹⁰¹ Rh	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
16	¹⁰³ Ru	N/A	불검출	불검출	불검출			불검출		
17	¹⁰⁶ Rh	15	불검출(<3.49)	불검출(<3.13)	불검출(<3.42)	불검출(<3.25)	불검출(<4.09)	불검출(<4.53)		
18	¹⁰⁹ Cd	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
19	^{110m} Ag	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
20	¹¹³ Sn	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
21	^{131}I	3	불검출(<0.436)	불검출(<0.469)	불검출(<0.828)	불검출(<1.01)	불검출(<0.895)	불검출(<0.915)		
22	¹³³ Xe	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
23	133m Y O	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
24	¹³⁴ Cs	5	불검출(<0.389)	불검출(<0.380)	불검출(<0.443)	불검출(<0451)	불검출(<0.485)	불검출(<0.537)		
25	¹³⁷ Cs	5	0.750±0.0993 (<0.479)	0.703±0.0949 (<0.460)	0.670±0.1046 (<0.512)	0.729±0.105 (<0.507)	1.51±0.122 (<0.563)	1.68±0.136 (<0.624)		
26	¹³⁹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
27	¹⁴⁰ Ba	70	불검출(<1.16)	불검출(<1.06)	불검출(<2.51)	불검출(<1.92)	불검출(<3.49)	불검출(<3.68)		
28	¹⁴⁰ La	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
29	¹⁴¹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
30	¹⁴³ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
31	¹⁴⁴ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
32	²⁰⁸ Tl	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
33	²¹² Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
34	²¹² Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
35	²¹⁴ Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
36	²¹⁴ Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
37	²²⁶ Ra	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
38	²²⁷ Th	N/A	3.65±0.668	불검출	4.42±0.823	불검출	4.60±0.897	4.93±0.961		
39	²²⁸ Ac	N/A	1,791±37.1	불검출	불검출	불검출	불검출	불검출		
40	^{235}U	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
41	²³⁷ U	N/A	불검출	불검출	불검출	불검출	불검출	불검출		

 $^{^{**}}$ 7 Be(베릴륨), 40 K(칼륨), 227 Th(토륨), 235 U(우라늄) 등은 자연 방사성물질로 특별한 관리가 필요하지 않음

Table 15. 토양(산업단지) 조사결과(Bq/kg-dry)

순서	핵종	MDA	산업단지 토양							
 ፲፱ / 기		MIDA	진주시	거창군	함양군	남해군	하동군	의령군		
1	⁷ Be	N/A	불검출	불검출	불검출	불검출	7.41±0.828	7.86±0.877		
2	⁴⁰ K	N/A	650±4.88	713±5.19	618±5.12	불검출	638±0.512	685±5.49		
3	⁵¹ Cr	15	불검출(<3.40)	불검출(<3.94)	불검출(<4.46)	불검출(<5.22)	불검출(<4.37)	불검출(<4.58)		
4	⁵⁴ Mn	2	불검출(<0.481)	불검출(<0.456)	불검출(<0.501)	불검출(<0.437)	불검출(<0.450)	불검출(<0.482)		
5	⁵⁷ Co	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
6	⁵⁸ Co	2	불검출(<0.393)	불검출(<0.394)	불검출(<0.424)	불검출(<0.457)	불검출(<0.469)	불검출(<0.499)		
7	⁵⁹ Fe	5	불검출(<0.710)	불검출(<0.854)	불검출(<1.53)	불검출(<1.25)	불검출(<0.492)	불검출(<0.520)		
8	⁶⁰ Co	2	불검출(<0.693)	불검출(<0.574)	불검출(<0.663)	불검출(<0.617)	불검출(<0.480)	불검출(<0.515)		
9	⁶⁵ Zn	5	불검출(<0.796)	불검출(<0.995)	불검출(<354)	불검출(<1.08)	불검출(<1.10)	불검출(<1.17)		
10	⁸⁵ Sr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
11	⁸⁸ Kr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
12	⁸⁸ Y	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
13	95 Zr	5	불검출(<1.06)	불검출(<1.25)	불검출(<0.974)	불검출(<1.32)	불검출(<0.982)	불검출(<1.04)		
14	⁹⁵ Nb	5	불검출(<0.451)	불검출(<0.487)	불검출(<0.540)	불검출(<0.580)	불검출(<0.557)	불검출(<0.586)		
15	¹⁰¹ Rh	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
16	¹⁰³ Ru	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
17	¹⁰⁶ Rh	15	불검출(<3.22)	불검출(<2.99)	불검출(<3.66)	불검출(<2.90)	불검출(<3.51)	불검출(<3.77)		
18	¹⁰⁹ Cd	N/A	불검출	불검출	불검출 불검출		불검출	불검출		
19	110mAg	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
20	¹¹³ Sn	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
21	¹³¹ I	3	불검출(<0.521)	불검출(<0.525)	불검출(<0.456)	불검출(<0.999)	불검출(<0.801)	불검출(<0.792)		
22	¹³³ Xe	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
23	^{133m} Xe	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
24	¹³⁴ Cs	5	불검출(<0.383)	불검출(<0.361)	불검출(<0.411)	불검출(<0.402)	불검출(<0.434)	불검출(<0.466)		
25	¹³⁷ Cs	5	불검출(<0.443)	불검출 (<0.456)	4.31±0.142 1.58±0.117 (<0.518) (<0.530)		5.08±0.155 (<0.556)	5.42±0.167 (<0.596)		
26	¹³⁹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
27	¹⁴⁰ Ba	70	불검출(<1.21)	불검출(<1.99)	불검출(<2.38)	불검출(<3.31)	불검출(<2.24)	불검출(<2.28)		
28	140 Ia	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
29	¹⁴¹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
30	¹⁴³ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
31	¹⁴⁴ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
32	²⁰⁸ Tl	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
33	²¹² Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
34	²¹² Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
35	²¹⁴ Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
36	²¹⁴ Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
37	²²⁶ Ra	N/A	불검출	불검출	불검출	65.7±3.26	55.1±3.31	59.2±3.55		
38	²²⁷ Th	N/A	3.25±0.591	불검출	3.71±0.725	불검출	4.33±0.782	4.48±0.810		
39	²²⁸ Ac	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
40	^{235}U	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
41	²³⁷ U	N/A	불검출	불검출	불검출	불검출	불검출	불검출		

^{** &}lt;sup>7</sup>Be(베릴륨), ⁴⁰K(칼륨), ²²⁶Ra(라듐), ²²⁷Th(토륨), ²³⁵U(우라늄) 등은 자연 방사성물질로 특별한 관리가 필요하지 않음

Table 16. 토양(농경지) 조사결과(Bq/kg-dry)

순서	핵종	MDA	농경지 토양							
L ^			진주시	거창군	함양군	남해군	하동군	의령군		
1	⁷ Be	N/A	불검출	불검출	불검출	4.35±0.843	불검출	불검출		
2	⁴⁰ K	N/A	626±5.16	646±5.25	642±5.33	불검출	1,044±6.86	885±5.82		
3	⁵¹ Cr	15	불검출(<4.36)	불검출(<1.99)	불검출(<4.63)	불검출(<4.42)	불검출(<7.08)	불검출(<5.86)		
4	⁵⁴ Mn	2	불검출(<0.457)	불검출(<0.493)	불검출(<0.521)		불검출(<0.768)	불검출(<0.650)		
5	³⁷ Co	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
6	⁵⁸ Co	2	불검출(<0.414)	불검출(<0.441)	불검출(<0.441)	불검출(<0.445)	불검출(<0.584)	불검출(<0.490)		
7	⁵⁹ Fe	5	불검출(<1.39)	불검출(<0.929)	불검출(<1.59)	불검출(<0.960)	불검출(<1.20)	불검출(<1.67)		
8	⁶⁰ Co	2	불검출(<0.240)	불검출(<0.316)	불검출(<0.690)	불검출(<0.780)	불검출(<0.817)	불검출(<0.693)		
9	⁶⁵ Zn	5	불검출(<1.02)	불검출(<0.906)	불검출(<0.368)	불검출(<1.12)	불검출(<1.16)	불검출(<0.977)		
10	⁸⁵ Sr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
11	⁸⁸ Kr	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
12	⁸⁸ Y	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
13	95 Zr	5	불검출(<1.17)	불검출(<1.15)	불검출(<1.01)	불검출(<1.31)	불검출(<1.20)	불검출(<1.01)		
14	95Nb	5	불검출(<0.496)	불검출(<0.528)	불검출(<0.561)	불검출(<0.613)	불검출(<0.753)	불검출(<0.626)		
15	¹⁰¹ Rh	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
16	¹⁰³ Ru	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
17	¹⁰⁶ Rh	15	불검출(<3.16)	불검출(<3.52)	불검출(<3.81)	불검출(<2.94)	불검출(<4.95)	불검출(<4.20)		
18	¹⁰⁹ Cd	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
19	^{110m} Αφ	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
20	¹¹³ Sn	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
21	^{131}I	3	불검출(<0.374)	불검출(<0.826)	불검출(<0.474)	불검출(<1.24)	불검출(<1.04)	불검출(<0.809)		
22	¹³³ Xe	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
23	133m Y O	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
24	¹³⁴ Cs	5	불검출(<0.403)	불검출(<0.436)	불검출(<0.427) 불검출(<0.413		불검출(<0.413)	불검출(<0.350)		
25	¹³⁷ Cs	5	불검출(<0.505)	4.31±0.146 (<0.545)	4.48±0.148 (<0.540)	3.42±0.153 (<0.638)	3.56±0.167 (<0.709)	3.02±0.142 (<0.601)		
26	¹³⁹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
27	¹⁴⁰ Ba	70	불검출(<1.74)	불검출(<2.22)	불검출(<2.48)	불검출(<2.81)	불검출(<1.37)	불검출(<1.11)		
28	¹⁴⁰ La	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
29	¹⁴¹ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
30	¹⁴³ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
31	¹⁴⁴ Ce	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
32	²⁰⁸ Tl	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
33	²¹² Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
34	²¹² Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
35	²¹⁴ Bi	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
36	²¹⁴ Pb	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
37	²²⁶ Ra	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
38	²²⁷ Th	N/A	불검출	4.52±0.734	3.85±0.753	6.68±0.928	6.14±1.08	5.03±0.886		
39	²²⁸ Ac	N/A	불검출	불검출	불검출	불검출	불검출	불검출		
40	^{235}U	N/A	불검출	불검출	불검출	3.33±0.639	불검출	불검출		
41	²³⁷ U	N/A	불검출	불검출	불검출	불검출	불검출	불검출		

^{**} 7 Be(베릴륨), 40 K(칼륨), 227 Th(토륨) 등은 자연 방사성물질로 특별한 관리가 필요하지 않음

Table 17. 토양(방사선비상계획구역) 조사결과(Bq/kg-dry)

순서	핵종	MDA		방사선비상계획구역		비고
[표기		MDA	응상정수장	삼호34근린공원	천성산 정상	H 12
1	⁷ Be	N/A	불검출	불검출	불검출	
2	⁴⁰ K	N/A	727±5.50	679±4.93	641±5.67	
3	⁵¹ Cr	15	불검출(<5.85)	불검출(<6.57)	불검출(<5.32)	
4	⁵⁴ Mn	2	불검출(<0.558)	불검출(<0.462)	불검출(<0.531)	
5	⁵⁷ Co	N/A	불검출	불검출	불검출	
6	⁵⁸ Co	2	불검출(<0.488)	불검출(<0.473)	불검출(<0.488)	
7	⁵⁹ Fe	5	불검출(<1.58)	불검출(<0.913)	불검출(<1.48	
8	⁶⁰ Co	2	불검출(<0.649)	불검출(<0.458)	불검출(<0.530)	
9	⁶⁵ Zn	5	불검출(<0.850)	불검출(<0.786)	불검출(<0.941)	
10	⁸⁵ Sr	N/A	불검출	불검출	불검출	
11	⁸⁸ Kr	N/A	불검출	불검출	불검출	
12	⁸⁸ Y	N/A	불검출	불검출	불검출	
13	⁹⁵ Zr	5	불검출(<0.899)	불검출(<1.28)	불검출(<0.680)	
14	⁹⁵ Nb	5	불검출(<0.637)	불검출(<0.617)	불검출(<0.662)	
15	¹⁰¹ Rh	N/A	불검출	불검출	불검출	
16	¹⁰³ Ru	N/A	불검출	불검출	불검출	
17	¹⁰⁶ Rh	15	불검출(<3.29)	불검출(<3.21)	불검출(<3.85)	
18	¹⁰⁹ Cd	N/A	불검출	불검출	불검출	
19	110m Ag	N/A	불검출	불검출	불검출	
20	Sn	N/A	불검출	불검출	불검출	
21	¹³¹ I	3	불검출(<1.34)	불검출(<1.38)	불검출(<1.46)	
22	¹³³ Xe	N/A	불검출	불검출	불검출	
23	^{133m} Xe	N/A	불검출	불검출	불검출	
24	¹³⁴ Cs	5	불검출(<0.315)	불검출(<0.356)	불검출(<0.454)	
25	¹³⁷ Cs	5	0.574±0.0966 (<0.477)	0.674±0.0939 (<0.456)	4.52±0.150 (<0.555)	
26	¹³⁹ Ce	N/A	불검출	불검출	불검출	
27	¹⁴⁰ Ba	70	불검출(<5.05)	불검출(<3.72)	불검출(<4.76)	
28	¹⁴⁰ La	N/A	불검출	불검출	불검출	
29	¹⁴¹ Ce	N/A	불검출	불검출	불검출	
30	¹⁴³ Ce	N/A	불검출	불검출	불검출	
31	¹⁴⁴ Ce	N/A	불검출	불검출	불검출	
32	²⁰⁸ Tl	N/A	불검출	불검출	불검출	
33	²¹² Bi	N/A	불검출	불검출	불검출	
34	²¹² Pb	N/A	불검출	불검출	불검출	
35	²¹⁴ Bi	N/A	불검출	불검출	불검출	
36	²¹⁴ Pb	N/A	불검출	불검출	불검출	
37	²²⁶ Ra	N/A	불검출	불검출	불검출	
38	²²⁷ Th	N/A	5.38±0.985	불검출	6.17±1.04	
39	²²⁸ Ac	N/A	불검출	불검출	불검출	
40	$ ^{235}U $	N/A	불검출	불검출	불검출	
41	²³⁷ U	N/A	불검출	불검출	불검출	

^{**} 40 K(칼륨), 227 Th(토륨) 등은 자연 방사성물질로 특별한 관리가 필요하지 않음

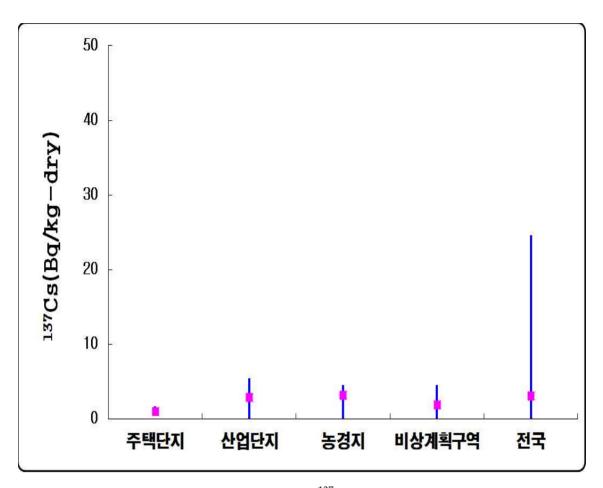


Figure 1. 토양에서 ¹³⁷Cs 분포 경향

6. 선량률 측정 결과

2018년 3월에 의령군과 함안군에 위치한 6개 방사선취급 허가업체 주변의 공간선량률을 측정하였고, 그 결과를 아래의 Table 18 수록함. 공간선량률은 지표면으로부터 1m 높이에서 측정한 선량률로 아래의 Table 10에서 보여주듯이 6개 허가업체 주변에서 측정된 공간선량률의 범위(최소~최대)는 92.5~168 nSv/hr로 자연방사선에 의한 국내 공간선량률 범위인 50~300 nSv/hr 내에 포함됨.

Table 18. 산업장주변 선량률 측정결과(3월 23일)

지역	업체명	공간선량률(nSv/hr)			지역	업체명	공간선량률(nSv/hr)		
		최소	최대	평균	7 1 -1	19711 0	최소	최대	평균
		121	135	128.00			139	168	153.50
	スパ**/ス\	112	128	120.00		도****(<i>ス</i>)	101	139	120.00
	씨**(주)	130	162	146.00		동****(주)	111	127	119.00
		132	148	140.00			132	149	140.50
의령군	소계	112	162	133.50	함안군	소계	101	168	133.25
기 % L	태****(주)	111	131	121.00		힌****(주)	111	132	121.50
		102	123	112.50			124	142	133.00
		92.5	121	106.75			132	162	147.00
		100	121	110.50			132	159	145.50
	소계	92.5	131	112.69		소계	111	162	136.75
		120	132	126.00		014444/Z\	123	148	135.50
	ስ***/즈\	130	154	142.00			112	132	122.00
함안군	한***(주)	122	149	135.50		월****(주)	132	157	144.50
		128	148	138.00			130	159	144.50
	소계	120	154	135.38		소계	112	159	136.63

^{※ 1.} 년간 1mSv 초과하지 않는 범위 내에서 주당 0.1 mSv, 시간당 20,000 nSv까지 허용(제한적 또는 일시적 사용)2. 년간 1mSv 초과하지 않는 범위 내에서 주당 0.1 mSv(제한적 또는 일시적 사용이외)